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Liquid-liquid phase separation in cylindrical pores:
Quench molecular dynamics and Monte Carlo simulations

Lev D. Gelb and K. E. Gubbins
School of Chemical Engineering, Olin Hall, Cornell University, Ithaca, New York 14853-5201

~Received 20 March 1997!

We have studied the liquid-liquid phase separation of a binary mixture confined in three different cylindrical
pores by several simulation methods. The phase diagrams of the fluid mixture in the three pores were deter-
mined using histogram-biased semigrand Monte Carlo simulations, and the kinetics of phase separation of the
confined liquid mixture were studied using quench molecular dynamics. In these systems, the interactions
between the two fluids and the pore wall are identical so that no wetting occurs and the fluid separates into a
series of pluglike domains after a temperature quench. We have determined that the growth of these domains
is given by a power law for systems near to their critical temperature, while for deeper quenches it proceeds by
a power law at short times which crosses over to a slower growth when the plug-shaped domains are large
enough to completely block the pore. Domains in these systems are shown to grow by a condensation mecha-
nism. Using a simple thermodynamic model we analyze theP(X) probability distributions from our Monte
Carlo simulations, and estimate the equilibrium domain lengths in two pores over a range of temperature.
These lengths are larger than those reached in our molecular dynamics simulations. In order to assess these
estimations, we have performed very long canonical Monte Carlo simulations to directly determine the equi-
librium domain lengths in a few of these pores.@S1063-651X~97!00709-5#

PACS number~s!: 64.70.Ja, 47.55.Mh, 61.20.Ja, 64.75.1g
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I. INTRODUCTION

When fluid mixtures are confined in very small spac
their behavior is quite different than in the bulk phase. T
liquid-liquid miscibility phase diagram for an adsorbed mi
ture can be very different from that of its bulk counterpa
and in sufficiently small spaces the liquid-liquid transitio
can be suppressed entirely. Since microporous membr
and adsorbates are routinely used in industrial separat
processes, understanding these effects is important in de
oping new separations technologies.

Microporous systems are difficult to study experimenta
because the pore structures of most of the commonly u
membranes and adsorbates are quite complex and difficu
determine, so that these materials are not well character
at the molecular level. Furthermore, many common ads
bents have amorphous structures with broad distribution
pore sizes and shapes, which makes a microscopic un
standing of fluid behavior in these systems very difficult.

In addition to strongly affecting the liquid-liquid coexis
ence curve, confinement in small pores changes the kine
of liquid-liquid phase separation. Many studies indicate t
in quenching experiments these systems rarely achieve m
roscopic phase separation and instead become ‘‘frozen’’
partially phase-separated states, with many small domain
each phase that are kinetically prevented from further c
densation.

There have been two phenomenological approaches to
scribing these effects. The first approach maps the~assumed
random! pore network onto the random field Ising mod
@1,2#, and these studies have had some success. How
this intuitive mapping breaks down for fluids in very regul
pore structures, which show the same kinetically limited
havior as observed in amorphous pores. Another appro
561063-651X/97/56~3!/3185~12!/$10.00
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which does not rely on a mapping to a known model, is
‘‘single pore model’’ developed by Liuet al. @3#. In this
model, macroscopic mean-field level thermodynamics
used to predict a ‘‘plug-tube-capsule’’ phase diagram for
phase-separated fluids in a single cylindrical pore. In
plug ‘‘phase,’’ the kinetics of late-time phase separation
very slow because of the large collective motions required
condense two domains into a single domain. That is, i
single pore filled with alternating plugs of two liquids it i
very difficult to condense two ‘‘like’’ plugs into a larger on
because the ‘‘unlike’’ liquid separating them must be r
moved first. In capsule phases this is not a problem,
equilibrium should be reached more quickly. The free ene
driving force towards this condensation decreases v
quickly with increasing plug size because the effective
traction between two plugs decreases exponentially w
their separation@4#. The evaporation-condensation mech
nism responsible for droplet growth in the bulk phase
nearly negligible at later times in cylindrical pores, since t
surface tension of a single cylindrical plug becomes nea
independent of its size as soon as its two surfaces are
enough apart that they do not ‘‘see’’ each other. Seve
Monte Carlo studies of the confined Ising model using K
wasaki spin-flip dynamics have noted these effects in a qu
tative way@5,6#.

Relatively few molecular dynamics simulations of th
phase separation of liquid mixtures in pore systems h
been done. There have been several studies of t
dimensional mixtures of simple spherical particles@7–10#;
these systems usually have an entirely repulsive interac
between unlike species. These studies have focused on
termining growth exponents and deviations from predic
scaling behavior. However, two-dimensionally infinite sy
tems are not comparable in these respects with o
dimensional systems like cylindrical pores, for reaso
3185 © 1997 The American Physical Society
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3186 56LEV. D. GELB AND K. E. GUBBINS
which we explain below. Zhang and Chakrabarti@11# used
molecular dynamics to study the phase separation of a t
dimensional fluid of this type in narrow channels. Th
found that the interfacial energy relaxed with time accord
to a power law with an exponent near20.3 for times up to
1000 time units, which they attributed to purely diffusiv
growth. In simulations in unevenly shaped pores they fou
a crossover to a faster growth at later times which was
tributed to hydrodynamic modes becoming important in
larger parts of the pores. We might expect that at even lon
times the growth would slow again, as the asymptotic lim
of the single pore model is reached. In a three-dimensio
study, Zhang and Chakrabarti@12# studied a similar mixture
in a cylindrical pore with dimensionsR58.7s and
l z569.6s and observed a kinetically limited phase sepa
tion qualitatively similar to that found by Monte Carlo Isin
model simulations.

Müller and Paul@13# and Albanoet al. @14# performed
extensive Monte Carlo simulations of the Ising model in
two-dimensional strip geometry using Glauber dynami
which do not conserve the order parameter. These sim
tions show that phase separation in this system is enti
diffusive and can be described well by an ‘‘annihilating ra
dom walk’’ model, and that the average domain size gro
in time ast1/2 for the full length of these simulations. Unfor
tunately, these dynamics do not describe real liquids v
well and we expect that this picture will not hold for mo
realistic models.

Using a Lattice-Boltzmann approach, Grunauet al. @15#
studied the phase separation of a binary fluid in a strip
ometry. These calculations support the prediction of
single pore model that phase separation slows dramatic
when the domain size becomes as large as the pore
There have also been several numerical studies of t
dimensional confined fluid mixtures using a Cahn-Hillia
approach, which predict similar behavior, and have also b
used to study the effects of wetting on the phase-separa
process@16–18#.

From a thermodynamic standpoint, the particular case
infinite cylindrical pores is difficult to deal with in simulatio
studies.~In experimental systems there are no sufficien
‘‘infinite’’ straight cylindrical micropores for this to be a
problem.! It is not possible for a system that is macrosco
in only one dimension to exhibit macroscopic phase sep
tion, because such a system is unstable with respect to
mation of small domains of each phase. That is, in a confi
system like a cylindrical pore~but not a planar pore! two
phases will not separate into two very large domains se
rated by one interface but will form a large number of sm
domains. The reason is that in a long narrow pore of len
L, the entropy associated with creating a ‘‘plug’’ of one d
main inside the other varies as ln(L), so thatTDS will be
larger than the free energy of the two surfaces of the p
for large enoughL. In two- and three-dimensional system
the surface tension of a domain grows with its size, so t
large domains are more stable than small ones and ma
scopic phase separation occurs spontaneously. In quasi
dimensional systems the surface tension of a large plu
nearly independent of its size and there is no driving fo
towards further phase separation.

In fact, simple thermodynamic models@19,20# predict that
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not only will the equilibrium state of such a system be
series of alternating domains, but that these domains
have some characteristic length which will vary with th
temperature of the system. This length can be large eno
that it does make sense to speak of phase separation in
systems, since under certain (T,X) conditions the two liquids
will form long ~but not macroscopic! domains which have
well-defined properties per unit length. This has been de
onstrated in both experimental@21–24# and simulation stud-
ies @11,25,12,26#. Rather than attempting to determine a tr
phase diagram by mapping out first-order transitions an
critical point, we can only determine the region of the (T,X)
plane for which this ‘‘micro-phase separation’’@24# occurs.
These systems do not have true critical points, but do ha
temperature where the correlation length grows to a ma
mum and the otherwise orderly arrangement of domains
the pore fluctuates strongly. Above this ‘‘pseudocritic
point’’ the domain structure vanishes and the system
comes homogeneous along the pore axis. In computer s
lation studies it is usually possible~except very near the top
of the coexistence envelope! to choose the periodic cel
length short enough that this micro-phase separation is
pressed, so that we can characterize the homogeneous p
directly.

At temperatures low enough that the correlation length
much smaller than the pore diameter, these systems be
like binary mixtures in three dimensions. The width of th
coexistence envelope at these temperatures is fit well by
three-dimensional Ising power law prediction, and in sim
lation studies this can be used to estimate the ‘‘pseudoc
cal’’ temperature and mole fraction. For very low temper
tures the Ising prediction fails for pore systems in the sa
way that it does for bulk systems. In the work that follow
we shall refer to ‘‘effective’’ coexistence curves, phase se
ration, and critical points, but it should be understood t
these systems do not undergo first-order transitions and
not have true critical points, and only show micro-pha
separation and the remnant of critical behavior.

We have studied a symmetric Lennard-Jones binary m
ture confined in a smooth cylindrical pore by a variety
computer simulation methods. We have used histogra
biasing techniques in the semigrand ensemble to determ
the phase diagrams of the mixture in three different cyl
ders, and found that the effective critical temperature is lo
ered as the pore diameter is decreased. We have perfo
several very large quench molecular dynamics simulation
order to test the predictions of the single pore model in
realistic system. We have found that the predicted slow
down of domain growth does occur, provided that the pore
large enough and the quench temperature is deep eno
Interestingly, even in these systems we have seen a s
growth mode at later times that is due to the slow diffusi
and condensation of relatively large domains. For sma
pores and mixtures near to their effective critical points
predictions of the single pore model break down, and
mains grow by a simple power law well into the asympto
regime~where the domain length is considerably larger th
the pore diameter!.

This study is part of a continuing effort to understand t
properties of fluid mixtures in well-characterized porous m
terials. Some of the quench results presented here have
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56 3187LIQUID-LIQUID PHASE SEPARATION IN . . .
peared previously@25# but are shown with more recent re
sults for easier comparison. In the current work, we ha
verified that these systems are only kinetically limited a
that the growing domains have not reached their thermo
namic equilibrium length. We have made a series of cal
lations of the probability distribution of the mole fraction
P(X), in different lengthsof pore and applied a very simpl
thermodynamic model to these data to estimate the equ
rium domain lengths, and found that they are considera
longer than those observed in all of our quench simulatio
It does not appear that any of our quench trajectories co
be extended to long enough times that these equilibrium
main lengths could be observed directly, although this m
be possible in a faster-equilibrating system.

In order to test the predictions of the simple thermod
namic model, we have attempted to directly measure
equilibrium domain length in our smallest pores at seve
temperatures by canonical Monte Carlo simulations us
particle-exchange moves that greatly speed this equilibrat
These calculations yield domain sizes similar to those de
mined from histogram data, but somewhat larger. We c
sider possible reasons for these differences.

II. PORE MODEL AND POTENTIAL FUNCTIONS

The fluid mixture in these simulations is a symmetric
nary Lennard-Jones mixture, given by the potential funct

Ui j ~r !5H 4e i j F S s i j

r D 12

2S s i j

r D 6G2Ui j ~r c!, r<r c

0, r .r c

~1!

whereUi j (r ) is the potential between two particles of sp
cies i and j separated by a distancer . The properties of the
mixture are determined by thee i j and s i j parameters. The
mixture that we have studied is symmetric, wi
s115s225s125s, ande115e225e. To induce liquid-liquid
phase separation we weaken the unlike-pair attractive
depth by settinge1250.65e11. In this system particles have
slightly different ‘‘excluded volume’’ with respect to eac
species, which is not physical for species of identical dia
eter. We stress that this potential is used for reasons of
plicity and calculational convenience, and only roughly a
proximates a real binary mixture. The potential is ‘‘cut a
shifted’’ at a distancer c53s, where its value is only abou
0.01e. This short-range truncation of the potential grea
decreases the amount of work that must be done in each
of the calculation, since only relatively close pairs of mo
ecules have nonzero interactions.

The pore that we use is a cylindrical hole cut out of
infinite solid of Lennard-Jones particles. By treating the so
as a continuum of fixed density, the interaction between
adsorbed molecules and the pore can be calculated as a
tion of radial position in the pore by using a one-dimensio
lookup table@27#. ~The integral over the three-dimension
solid can be solved analytically in two dimensions, but t
third reduces to an elliptic function.! The potential used in
this integration is not truncated, i.e.,r c5`.

The interactions between the fluid and pore are given
e1W5e2W51.277e ands1W5s2W51.094s. In addition, the
density of the solid wall is 0.988s23. These parameters hav
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previously been used to model argon adsorbed in pore
carbon dioxide@28,29#. This potential is considered ‘‘weakly
attractive’’ when compared with strong adsorbates like p
rous carbons.

We have studied three different cylindrical pore syste
and one bulk system as a reference. We have chosen the
sizes and numbers of particles so that the ‘‘effective’’ de
sity in each pore~and the bulk system! is the same,
reff50.838s23. The effective density is defined~arbitrarily!
by the effective radiusReff5R2s/2, which roughly ac-
counts for the volume of the cylinder excluded by the wa
fluid potential. The three pore systems used have radii (R) of
3s, 5s, and 7s; all the pore-fluid potential parameters we
the same for the different pores.

In all of the results that follow, we quote quantities
Lennard-Jones reduced units@30#. For potentials of the
Lennard-Jones type, the reduced temperature is express
‘‘natural’’ units of e/kB . Likewise, the natural unit of length
is s, and the reduced time is measured in units
t5Ae/ms2, with m being the mass of a particle.

III. CALCULATION OF PHASE DIAGRAMS

A. Histogram-biased semigrand ensemble method

For the case of a binary mixture in a pore, Monte Ca
simulation in the semigrand ensemble is essentially a c
stant (T,r,Dm) calculation@31,32#. That is, thenumber den-
sity of particles is held fixed, but themole fractionof the
particles is allowed to vary. This is accomplished by inclu
ing Monte Carlo moves that attempt to change a particle
one species into a particle of the other species. This
semble is very convenient for studying liquid-liquid trans
tions because it does not require particle-insertion mov
which are inefficient at high density, or volume-chan
moves, which are expensive.

In order to determine the phase coexistence curve we
a modification of the method used by Wilding to calcula
the liquid-vapor coexistence curve of the Lennard-Jones fl
@33#, which is an application of the more general ‘‘multica
nonical’’ approach to Monte Carlo simulation@34#. First, we
perform a standard run at a temperature slightly above
expected critical point. Over this run we accumulate a tw
dimensionalhistogramof the mole fraction and the energy
HN(X,E). The entries in this histogram will be proportion
to the probability of observing states with that mole fracti
and energy;PN(X,E)}HN(X,E). The probability distribu-
tion function will depend on the system size. In the sem
grand ensemble,

PN~X,E!5
1

Yexp~bDmXN2bE!WN~X,E!, ~2!

whereY is the appropriate partition function andWN(X,E)
is the microcanonical density of states forN particles at mole
fraction X and energyE. ~If Dm5m12m2 thenX5X1, the
mole fraction of component 1.! Factorial terms due to the
indistinguishability of particles@31# are subsumed into
WN . Therefore

HN~X,E!}exp~bDmXN2bE!WN~X,E! ~3!
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3188 56LEV. D. GELB AND K. E. GUBBINS
and we can use this expression toreweight the measured
histogram to a temperature slightly below the critical poin

HN~X,E!b8,Dm8
HN~X,E!b,Dm

5exp@~b8Dm82bDm!XN2~b82b!E#.

~4!

We then collapse the new histogram onto a one-dimensi
histogram inX: HN8 (X)5(EHN(X,E). We can use this new
histogram as abiasing potentialin a second Monte Carlo run
at the lower temperature. Inside the coexistence region
PN(X) distribution has two peaks, which correspond to t
coexisting phases. In a standard simulation the tunneling
between these peaks is very small, so that only one pea
the other is found in a single simulation. By including th
biasing potential we remove the barrier and sampleboth
peaks and the region in between. In the calculation we g
erate states distributed according to exp(bDmXN
2bE)/HN8 (X). At the end of the simulation, having collected
new HN(X,E) histogram, we correct for the bias by mult
plying the i th row of HN , HN(Xi ,E), by HN8 (Xi). In exactly
symmetric systems theP(X) distribution should be symmet
ric aboutX50.5, and we may average the two halves of
distribution to improve statistics. As an example, a set
biased, unbiased, and symmetrized histograms from a ca
lation in a 3s radius pore system are shown in Fig. 1.
asymmetric systems the coexistence chemical potential
ference is not trivial and we can determine the coexiste
chemical potential difference by reweighting the histogr
in the Dm direction until the volumes under each peak a
equal; this is theequal-weight criterionfor the coexistence
point @35#. This must be done at each successive tempera
step. This procedure can be repeated down the coexist
line in large steps, so that five or six simulations can co
most of the liquid-liquid coexistence region@36#.

B. Phase diagrams

We have calculated phase diagrams at fixed density in
(T,X) plane for all three pore systems and the bulk refere

FIG. 1. Biased, unbiased, and symmetrized histograms from
N5300 run atkBT50.95e in the 3s pore system. The raw~biased!
output histogram, bias-corrected histogram, and symmetrized b
corrected histograms are shown superimposed. All three histog
have been normalized to unity.
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system. In order to avoid spurious effects from period
boundary conditions along the pore axis, we have chosen
pores to be considerably longer than their effective dia
eters; the pore lengths werel z530.375s,18.75s,13.5s, and
10.64s, in the 3s, 5s, 7s and bulk systems. The number o
particles used wasN5500, 1000, 1500, and 1000, respe
tively.

Histograms were taken in temperature steps
kBDT50.05e reduced units according to the procedure d
scribed above, with at least 5003106 Monte Carlo moves
~mostly identity-exchange moves! run for each temperature
Since these systems are quick to equilibrate due to high
ceptance ratios for the identity-exchange moves, we typic
ran ten or 15 short independent simulations in parallel, av
aging all the data after a few million moves equilibratio
time. These calculations were run on the IBM SP2 at
Cornell Theory Center. The resulting bias-corrected his
grams were symmetrized aboutX50.5 and used to deter
mine P(X) curves at temperature increments
kBDT50.01e, from which the phase diagrams were calc
lated. The peak positions were determined by fitting the h
togram data near each peak to Gaussian functions and lo
ing the peaks of the Gaussians.

In order to locate the critical point, we calculated the c
existence diameter as a function of temperature and fit th
data to the three-dimensional Ising-model prediction@37#.
We stress that this procedure is only an approximate wa
locating theeffectivecritical point for the cylindrical pore
systems. In bulk systems this is a fairly accurate way
determining the critical temperature@38#, provided that data
‘‘near’’ to the critical temperature~in our case, usually
within about 0.07 temperature units! are not used in the fit.

The phase diagrams for all four systems are shown in F
2. The estimated critical temperatures for these systems
bulk phase,kBTc.1.64e; 3s cylinder, kBTc.1.15e; 5s
cylinder, kBTc.1.28e; and 7s cylinder, kBTc.1.33e. As
the cylinder size is decreased, the critical temperature is
duced considerably. Note that these different systems
comparable only in density; at a given temperature, th
internal energies are quite different~due to the different radii
of the pore-fluid potentials! so that the confined fluids are no
in equilibrium with each other.

n

s-
ms

FIG. 2. (T,X) phase diagrams for all three pore systems stud
The open symbols are measured points, while the solid lines
Ising-like fits to the data.
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IV. QUENCH MOLECULAR DYNAMICS

We have performed five different quench experiments
this study. Some analysis of two of these runs was publis
previously@25#. Three of these runs were done to determ
the effects of quench temperature on the domain growth
cess; these three were run atkBT50.75e, 1.00e, and 1.10e in
the 3s pore. We have also run trajectories in 5s and 7s
pores atkBT51.00e, to determine the effect of increasin
pore size at fixed temperature.

A. Details of molecular dynamics calculations

In each quench study the system was equilibrated
high temperature (kBT55.0e) for at least 30 000 time step
using a Gaussian isokinetic thermostat. The system was
quenched to a temperature in the two-phase region i
single step by changing the thermostat temperature, and
integration was continued for between 600 000 a
2.253106 more time steps, still using the Gaussian therm
stat. The length of a single time step was 0.005t, and we
used a third-order Gear finite difference algorithm for t
integration. ~Equilibrium calculations were also done wit
fifth-order Gear algorithms, and we could detect no diff
ence in the fluid properties between these two algorithm!

The data shown for the single 5s system are an averag
over nine independent runs of smaller systems of len
187.5s (N510 000). The data shown for thekBT51.00e,
3s system are an average over eight independent run
smaller systems of length 562.5s (N59258). The other
three systems were run as single trajectories, each
N5100 000.l z in the 3s, 5s, and 7s pores was 6075.8s,
1875s, and 900s, respectively.

All the quench calculations were done with a parallel m
lecular dynamics code based on a one-dimensional dom
decomposition algorithm. For the smaller systems stud
(N.10 000) we used 15 or 20 processors, and for the la
(N5100 000) systems we used 64 processors. In the la
systems, we could typically get between 250 000 a
300 000 steps into a single 20 hour run, depending on
pore diameter. These calculations were all run on either
IBM SP2 at the Cornell Theory Center or the Cray T3D
the Pittsburgh Supercomputer Center. The total CPU t
used by the quench calculations was approximately 18
hours.

We have used two different measures to monitor
phase-separation process. The first isE(t)2E0, the total po-
tential energy per particle of the system relative to a fu
relaxed state, the homogeneous phase at saturated conc
tion. After an initial decay of transients this quantity effe
tively measures the interfacial area in the system, which
inversely proportional to the domain size for these syste
The reference state energy for each pore system was d
mined in a separate simulation, using a canonical Mo
Carlo run in a short cylinder at a mole fraction determin
from the phase diagrams measured earlier.

The second measure is the average domain size. We
define a local selectivity~dependent on time and thez coor-
dinate! by
n
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h~z,t !5
r1~z,t !2r2~z,t !

r1
01r2

0
, ~5!

wherer1(z,t) is a short-time averaged density of compone
1 at positionz, r1

0 is the system-averaged density of comp
nent 1, etc. We then calculate the autocorrelation function
h in thez direction,^h(z,t)h(0,t)&. The position of the first
minimum of this function, referred to asl (t), is characteristic
of the domain size and is the one-dimensional analog of
scaling form used in two and three dimensions@7#. As an
example, a set of autocorrelation functions from the que
to kBT50.75e in the 3s radius pore system are shown
Fig. 3. Large-scale simulations are necessary because
quality of data is determined by the number of domai
which is much smaller than the number of particles. We ha
attempted to use cluster-counting routines@30# to determine
the distribution of domain sizes, but found that because
the relatively diffuse interfaces these definitions were
tremely sensitive to cutoff parameters and were not relia

In order to visualize the domain growth process, we a
plot a coarse-grained one-dimensional mole fraction a
function ofz and time. That is, we average the mole fracti
in a 1s section of pore over a few hundred time steps; if t
total average is greater than 0.5, we plot a point, if it is le
than 0.5, we leave a space. These ‘‘snapshots’’ are then
side by side, as shown in Fig. 8. This format is a conveni
way to visualize a large number of large molecular config
rations side by side.

B. Variation of quench behavior with temperature

The domain sizes as functions of time for the thr
quench experiments in the 3s radius pore are shown in Fig
4. At short times, all three curves follow a power la
growth, with larger exponents for higher quench tempe
tures. The short-time growth exponent in thekBT50.75e
quench is 0.21260.006, in thekBT51.00e quench it is
0.21260.003, and in the kBT51.10e quench it is

FIG. 3. Autocorrelation of local selectivity, for several times
the kBT50.75e quench run in the 3s radius cylinder system. At
later times, the position of the first minimum moves to largerz, and
the amplitude of the oscillation increases. Thez discretization is
0.25s; the small oscillations atz<2.5s are due to correlation in the
liquid structure.
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0.25460.007. As the temperature is increased, thel (t) data
becomes noisier. This is caused by increasingly diffuse
main boundaries and larger fluctuations in the liquid. At la
times, thekBT51.00e and 1.10e quenches continue to fol
low their early-time power law growth, while the deepe
quench crosses over to what appears to be a second p
law with exponent 0.11960.004. ~Over this range of time
these data are fit well by a power law form; at later times
growth may slow further.!

The corresponding energy relaxation data for all th
quenches in the 3s pore are shown in Fig. 5. These da
show the same qualitative trends as thel (t) data for these
systems. The short-time relaxation exponents
20.25560.001,20.21660.005, and20.32760.002 for the
kBT50.75e, 1.00e, and 1.10e quenches, respectively. Th
energy relaxation exponents for thekBT50.75e, and 1.10e
quenches are slightly larger than expected. The late-time
ponent for thekBT50.75e system is20.12260.004, in
good agreement with thel (t) data.

In all of these quench experiments, the relaxation ex
nents measured from the energy data depend strongly on
choice of reference energyE0. Because the two fluid com
ponents are reasonably soluble in each other, accurately

FIG. 4. Growth in average domain sizel (t) with time after
quench, for the 3s cylinder atkBT50.75e, 1.00e, and 1.10e.

FIG. 5. Energy relaxation vs time after quench, for the 3s cyl-
inder atkBT50.75e, 1.00e, and 1.10e.
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terminingE0 requires knowing the saturation concentration
so that small errors in our phase diagram calculations ma
magnified into large errors in our energy relaxation exp
nents. Although the data may be fit well by the power la
the uncertainty in the exponent calculated from ax2 fitting
procedure does not reflect this possible systematic error
to the use of a reference energy.

From the quench data at different temperatures, we c
clude that the growth exponents in these systems are we
dependent on temperature, and that the presence of a c
over to a slow mode at late times only occurs if the tempe
ture is far enough below the critical point that the interfac
between domains are well defined on a small length sca

C. Variation of quench behavior with pore size

The average domain sizes as functions of time after
quench for all three systems atkBT51.00e are shown in Fig.
6. In all three pores the domains grow according to a pow
law at short times. The exponent for this growth in the 7s
cylinder is 0.3560.01, the exponent in the 5s cylinder is
0.2760.01, and the exponent in the 3s pore is
0.21260.003. For larger pores, the short-time exponent
larger. This can be compared with previous simulations
bulk phase-separation behavior, in which the domain size
critical quenches was found to grow with a much larger e
ponent. Maet al. measured a value of 0.660.1 for this ex-
ponent@39#, while more recent~and larger! simulations of a
slightly different system by Laradjiet al. found an exponent
of 1.0 @40#; the discrepancy may be due to the two simu
tions reaching different asymptotic behaviors at differe
times @40#.

At later times, in the two larger pores there is a distincti
slowing in the growth rate. In the larger 7s system this
crossover is quite sharp and occurs atl (t).11s, while in the
smaller 5s pore it happens more gradually, beginning wh
l (t).9s. In the smallest cylinder the original power la
behavior persists unchanged to the longest times we w
able to simulate.

The corresponding energy relaxation data for the th
systems atkBT51.00e are shown in Fig. 7. The same ge
eral trends occur in these data as in thel (t) data; for larger
pores, the crossover to slow relaxation at later times

FIG. 6. Average domain sizel (t) vs time after quench, for all
three cylinders atkBT51.00e.
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sharper and the initial relaxation exponent is larger. The
ponents for the energy relaxation in the three systems
20.21660.005, 20.3260.01, and20.42660.002 in the
3s, 5s, and 7s systems, respectively. As the pore diame
is increased, the agreement between the domain size
energy relaxation exponents becomes poorer. This fast re
ation of the energy may be caused by the gradual cross
from three-dimensional to one-dimensional growth. As d
mains grow to block the width of the pore, their liquid-liqu
interfaces are quickly replaced by liquid-solid~pore! inter-
faces, as their shape changes from irregular to cylindri
So, as large, irregularly shaped domains become cylindr
plugs their contact area with the other phase is greatly
duced, even though their average length may not cha
much. In fact, the ratio of~absolute! exponents in the 5s
pore is only about 1.18 to 1, while in the 7s pore the ratio is
1.22 to 1, so that this is not an extreme effect. The 3s pore
appears to be within the one-dimensional regime, and
exponents agree.

D. Domain growth mechanism

In Fig. 8 we plot coarse-grained domain profiles of t
three quench trajectories atkBT51.00e, in order to deter-
mine the mechanism of domain growth at later times.
short times, each system consists of a large number of s
domains which quickly condense into slightly larger d
mains. At later times it is clear that in the 5s and 7s pore
systems all further growth occurs via a relatively small nu
ber of condensation events, where two neighboring dom
merge into one larger domain. In the smallest cylinder, t
process is not as obvious. Since domain growth in this s
tem occurs with a smaller power law exponent but ove
longer length scale, we believe that there must be a relati
slow transfer of mass from smaller domains to larger
mains by diffusion.

E. Short-time relaxation of energy

We have noted that for very short times the energy rel
ation in all five quench systems does not follow a power l
but a more complex form.@Since we only measure thel (t)

FIG. 7. Energy relaxation vs time after quench, for all thr
cylinders atkBT51.00e. In order that the data not overlap, th
7s pore data have been shiftedup by 0.5 and the 5s pore data have
been shiftedup by 0.25.
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data every 50 or so time units, we do not observe this the#
The short-time energy relaxation data for all five trajector
are shown in Fig. 9. All the curves have a very similar sha
and all of the systems begin to follow simple power la
relaxation at about the same time after quenching,t.150t
@ln(t).5#. This relatively slow relaxation at short times ma
be due to the aftereffects of the very fast quench att50, so

FIG. 8. Coarse-grained domain profiles from the quench sim
lation in the ~a! 3s, ~b! 5s, and ~c! 7s pore systems at
kBT51.00e. The black bars are domains rich in one compone
white spaces domains rich in the other. Thex axis is the simulation
length; each pore ‘‘snapshot’’ is an average over 500 steps,
spacing of 15 000 steps between snapshots.
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3192 56LEV. D. GELB AND K. E. GUBBINS
that the ‘‘local’’ liquid structure in these systems takes ab
this long to equilibrate at the quench temperatures. For
reason, in all of our curve fitting to the energy relaxati
data, we have only used the data takenafter t5150t.

V. ANALYSIS OF P„X… HISTOGRAMS

A. Simple theory of one-dimensional behavior

The thermodynamics of one-dimensional systems of m
ecules having finite-ranged interactions prohibit macrosco
phase transitions. The classic argument for this@19# is that
we can write the free energy of a two-phase, on
dimensional system~ignoring effects from interactions be
tween interfaces! as

F2F05nTlnS n

eLD1ng, ~6!

where L is the length of the system,n is the number of
interfaces~and in a periodic system, the number of domain!,
and g is the surface tension. The logarithmic term is t
entropy due to the motion of the domains.F0 is the free
energy of the fully relaxed~e.g., phase-separated! system.
For largeL, the entropy associated with domain motion w
always be larger than the total surface tension, so that m
roscopic phase separation will not occur and the system
consist of microscopic domains of some equilibrium leng
L/n.

In order to estimate the average size of these domains
introduce a scale factor to fix the units ofL; by setting
BL85L we get

F2F05nTlnS n

L8
D 1nTlnS 1

BeD1ng ~7!

5nFTlnS n

L8
D 1CG , ~8!

FIG. 9. Short-time energy relaxation data for all five quen
runs. The energy relaxation for the first 50 time units is quite slo
followed by a gradual crossover to linear behavior at arou
t5150t @ln(t).5#.
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where the surface tension and scale factor have been
sorbed intoC. So, if we can determineF2F0 andC, we can
determine the equilibrium domain length. By differentiatin
the above expression with respect ton we end up with

]~F2F0!

]n
5C1T1TlnS n

L8
D , ~9!

which we set equal to zero, and get

lnS L8

n D5
T1C

T
. ~10!

B. Calculation of equilibrium domain sizes
from histogram data

We expect that the equilibrium domain length in a pha
separated system, although microscopic, will be large o
molecular scale. Therefore in a small system at equilibri
there would never be more than two domain walls~so that
the system is fully phase separated!. We can apply this
simple model to such a system and use it to calculate
value ofC, which should be independent of system size
systems long enough that the interfaces do not strongly
teract.

From the histogram-biased Monte Carlo simulations
scribed above we have determinedP(X) in many such sys-
tems. These histograms all have similar shapes. There
two peaks, one corresponding to each phase, and a br
very flat region between the two peaks, which correspond
phase-separated states with total mole fractions betw
those of the two homogeneous phases. Thearea of this re-
gion is proportional to the free energy of the phase-separ
system. Since the areas of the single peaks~which are equal!
are proportional to the free energies of the homogene
phases, the ratio of these areas gives us the free energy
ferenceF2F0. More specifically, if P is the area of the
interfacial region andP0 is the area of one of the peaks, the
F2F052Tln(P/P0).

In practice, we estimate the area of the interfacial reg
by multiplying the height of the normalized histogram
midpoint by the distance between the two equilibrium pea
P[Hmid(X22X1). That is, the interfacial contribution to th
full P(X) distribution is assumed to be rectangular. Since
are only considering symmetric systems and theP(X) distri-
bution is normalized, the area of one peak is then j
(12P)/2 and the calculation ofC is simple, since we know
the pore lengthL8 in reduced units and there are two inte
faces.

C. Results

In the 3s cylinder we have obtainedP(X) histograms for
kBT50.95e, 0.975e, 1.00e, 1.025e, and 1.05e, in pores with
N5100, 300, 500, 700, and 900 (l z56.075s through
l z554.675s). All of these histogram runs were of length
similar to those used for the phase diagram calculations
Fig. 10 are some of theP(X) distributions from these runs
The histogram peaks show the expected behavior; as the
tem is made larger at a single temperature the peaks bec
sharper and shift to slightly higher mole fraction@41,42#,

,
d
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while as the temperature is raised in a single pore the pe
become broader and the peak location moves towa
X50.5, its critical value.

In the two larger systems, the region of the curve betw
the two peaks is visibly flat, as predicted by our simp
model. As the temperature is raised, theP(X) value at the
midpoint of this flat region increases, indicating that t
probability of observing the system in a two-phase state
increasing relative to the probability of observing it in a on
phase state. As the temperature is brought near to the cr
temperature, especially in the largest pore, the flat reg
aroundX50.5 begins to bulge upwards. This is caused
there beingmore than twodomains in the system; near th
critical temperature the domain length can be fairly sm
and forX near to 0.5 there might be, say, four domains in
periodic system. ForX further away from 0.5, these ‘‘extra’
domains would have to be very small. Due to the nonz
width of the domain interfaces in the real system this is
favorable, so that ‘‘extra’’ domains only contribute to th
entropy nearX50.5, and we see a broad peak inP(X). At
lower temperatures this does not occur because the do
lengths will be much larger and these relatively short po
will only hold two domains.

In the 5s cylinder we have measuredP(X) histograms
for kBT51.10e, 1.15e, 1.20e, and 1.25e for systems with
N5400, 1000, 2000, and 3000 particles, with system leng
betweenl z57.5s andl z556.25s. These histograms have a
the same qualities as those in the smaller cylinder. A se
tion of these data is shown in Fig. 11, and follows all of t
same trends as the 3s histograms, even showing a sma
bulge in theP(X) data nearX50.5 for the largest system a
the highest temperature.

In both cylinders we have measured the equilibrium d
main length as a function of temperature using the sche
described above. In each case we calculatedC at each tem-
perature in all of the different pore sizes studied, in orde
determine if there were higher-order effects that our sim
theory was missing~which would result inC being depen-
dent on system size!. In all cases, for pores of length great
than 10s the values ofC showed only a weak dependen

FIG. 10. Bias-corrected histograms from the thermodyna
study of domain sizes in the 3s pore system at several temper
tures. Three differentlengthsof pore are shown, containing 100
500, and 900 fluid particles.
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on domain size, if any. For instance, in the 3s pore at
kBT50.95e, the values of C calculated in the
N5300, 500, 700, and 900 systems were 3.82, 3.88, 3
and 3.89, respectively. For each temperature in the 3s pore,
we have used the average value ofC over these systems t
determine the equilibrium pore length.~In the 5s pore, we
have averaged over theN51000, 2000, and 3000C values.!

The estimated equilibrium domain lengths from these c
culations are shown in Fig. 12, along with equilibrium d
main lengths determined from direct Monte Carlo simu
tions ~described in the next section!. A logarithmic scale is
used to show all the data on one graph. In the smaller p
the estimated domain sizes range froml eq5158s at
kBT50.95e to l eq524.7s at kBT51.05e. In the larger pore
the equilibrium domain lengths are much larger at these t
peratures but become quite small near to the critical temp
ture, ranging from 73105s at kBT51.05e down to 24.9s at
kBT51.25e, only slightly below the critical temperature
These lengths show that none of our quench molecular
namics runs were near to their equilibrium states at the

c FIG. 11. Bias-corrected histograms from the thermodynam
study of domain sizes in the 5s pore system at several temper
tures. Three differentlengthsof pore are shown, containing 1000
2000, and 3000 fluid particles.

FIG. 12. Results from histogram analysis for the equilibriu
domain length in the 3s and 5s pore systems, and from direc
Monte Carlo simulation of the equilibrium domain length in th
3s system, over a range of temperature.
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3194 56LEV. D. GELB AND K. E. GUBBINS
of the trajectories. It might be possible for a longer run in t
3s system atkBT51.10e to come to thermodynamic equ
librium, but this would probably require a trajectory of mo
than 103106 steps, which is currently not feasible for a sy
tem of 105 particles.

VI. EQUILIBRIUM MONTE CARLO SIMULATIONS

We have already explained that equilibrium domain si
cannot be estimated directly from molecular dynamics sim
lations because these simulations are kinetically limited
cannot reach true thermodynamic equilibrium in reasona
simulation times. Also, the equilibrium lengths predict
from the histogram data are quite large, even for tempe
tures near to the critical point. By using a simulation tec
nique that equilibrates faster such a direct determination m
be possible, at least for some of these systems.

We have performed canonical Monte Carlo simulations
a 3s pore system at several different temperatures in orde
verify this. These simulations consisted of two differe
kinds of moves: the usual Monte Carlo displacement mov
and moves where two particles of different species are
changed.@It is simple to show that the acceptance criteria
these exchange moves is just exp(2bDE) as usual, provided
that both particles are chosen randomly.#

Each simulation was run for 200 000 Monte Carlo cycl
with each cycle consisting of 8000 particle-displacem
moves and 2000 particle-exchange moves. The system
sisted of 9258 particles atX50.5 in a 562.5s long, 3s ra-
dius pore, as used in one of the quench molecular dynam
runs. Because the Monte Carlo method is not easily para
ized these calculations were run on workstations; each t
approximately 350 hours to complete. At the end of ea
simulation the data were analyzed to calculate dom
lengths in the same way thatl (t) data were measured from
the quench trajectories.

We have run three different temperatures in this way. T
lowest temperature,kBT51.00e, gave an equilibrium do-
main length estimate ofl eq584s615s. Coarse-grained do
main profiles from this calculation are shown in Fig. 13~a!.
Because the domains are so large there are very few in
system at any one time, and our average value may be a
estimate. Furthermore, we see from the profile data that
correlation time in this system is quite long, so that succ
sive blocks of 5000 Monte Carlo cycles are highly cor
lated, which also reduces the quality of this average.

In Fig. 13~b! are the coarse-grained domain profiles fro
a Monte Carlo run atkBT51.05e. The average domain
length from these data isl eq542s610s. This system also
shows considerable correlation between successive block
erages, especially at earlier ‘‘times.’’ The last Monte Ca
run was done atkBT51.10e, which gave an equilibrium do
main size ofl eq538s66s. Domain profile data from this
calculation are shown in Fig. 13~c!.

These estimated values are shown alongside those c
lated from histogram data in Fig. 12. The directly measu
values appear to be less temperature dependent than the
calculated from the histograms and are systematic
slightly larger. One possible source for this discrepancy
the approximations that we have made in applying the sim
thermodynamic model described above. The first approxi
e
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tion is that the interfaces in the system have zero width
do not interact. This is nearly true for very long systems
low temperatures, but as the temperature is raised the su
tension is lowered and the domain boundaries become m
broader. The effect of this broadening is toreducethe en-
tropy of the real system, so that the model will overestim

FIG. 13. Coarse-grained domain profiles from Monte Ca
simulations in the 3s pore system at~a! kBT51.00e, ~b!
kBT51.05e, and~c! kBT51.10e. The black bars are domains ric
in one component, white spaces domains rich in the other. Thx
axis is the simulation length; each pore ‘‘snapshot’’ is an aver
over 5000 Monte Carlo cycles.
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this value and underestimate the average domain length.
is a temperature dependent correction and will be more
portant at higher temperatures, which may account for
discrepancy in the temperature dependence of the two se
data. Because we have no simple way to estimate the in
facial widths in the system, applying this correction in
meaningful way is difficult.

The other major approximation made in applying t
simple model to these systems was the assertion
P[Hmid(X22X1). This is an arbitrary decomposition of th
histogram into interfacial and homogeneous parts and alm
surelyoverestimates P, since we have not taken into accou
the width of the homogeneous phase peaks. Therefore
approximationalso overestimates the entropy in the syste
and underestimates the equilibrium domain size. This e
should be less dependent on temperature than the one
scribed above. Correcting for this would be somewhat a
trary without a detailed theory of the shape of the his
grams.

VII. DISCUSSION

Although computer simulations of confined systems b
efit from a relative lack of finite-size effects due to period
boundary conditions and small system sizes, cylindrical p
systems pose special problems, especially at tempera
near the top of the phase envelope. With some caution,
usual concepts of phase transitions can be applied here
these interpretations break down when the one-dimensi
nature of the system begins to strongly influence its beh
ior. Nevertheless, useful information about the thermo
namics of liquid mixtures in cylindrical micropores can b
obtained in this way.

In reasonably large micropores~more than a few tens o
molecular diameters thick! many of these problems are ac
demic; the temperature range over which these o
dimensional effects are visible is extremely small and is
observable using present molecular simulation technique
these pores finite-size scaling theories can be applied to
timate the shift in critical temperature and pressure@42#.
These theories are very successful at describing critical p
shifts due to confinement, but are applicable only when
scale of confinement is large relative to the scale of ato
interactions, so that the shifts are small. In the small po
that we have studied this condition fails; the liquid is high
structured even in the center of the pore and the shifts
critical parameters from their bulk values are large.

We have demonstrated that by using a very simple th
modynamic model reasonable estimates of the equilibr
domain sizes in these systems can be obtained fromP(X)
data from Monte Carlo simulations. Although obtaining t
P(X) data requires long simulations in fairly large system
the analysis of these data is simple and gives good res
We have shown that this model is consistent over a rang
pore sizes, lengths, and temperatures, in that the pred
equilibrium domain lengths are not systematically depend
on the pore lengths used in the simulation~except in the
shortest pores used! and that the histograms we have me
sured have the expected shapes for all systems except
ones close to the critical temperature. Introducing grea
realism into the model by including nonzero interfac
his
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widths is not difficult, except in calculating the appropria
widths. We have tried this for a few of the systems stud
and found that the effects of introducing interfaces 5s and
10s wide are relatively small, so that the predicted equil
rium domain lengths only change by 10% or 20%.

We have also shown that directly determining the equil
rium domain sizes is possible via Monte Carlo simulatio
at least in small pores relatively near to their critical poin
It is likely that extremely long simulations in larger system
will be required for accurate results. The data we have so
show somewhat longer domains than the thermodyna
model does, which appears to be due to a systematic ove
timation of the entropy in the thermodynamic model. T
Monte Carlo approach to calculating domain sizes wo
also allow calculation of the equilibriumdomain size distri-
bution, which is not immediately accessible from theP(X)
data.

The main conclusion that we draw from the quench m
lecular dynamics part of this study is that the picture
phase-separation kinetics obtained from the single p
model~and supported by a number of simulations of liqui
and Ising models in large pores! appears to break down fo
sufficiently narrow pores. We have studied several differ
pore sizes and temperatures to better characterize this be
ior.

In very small pores, for temperatures near enough to
apparent critical point there is no crossover to a slow-grow
mode. This is due to the increased mobility and width of t
domain interfaces at higher temperatures. We have only
served this directly in the smallest (3s) pore studied, but
expect that it would also be true in the 5s pore for a quench
temperature much closer to the pore critical point.

As we make the pores bigger, the behavior at short tim
approaches that of a bulk system. This is indicated by
increase in the growth exponents. In the largest pore we s
ied the growth exponents are far from their predicted b
values, indicating large confinement effects even in 7s ra-
dius pores.

At short times there is a slow relaxation of the energy t
appears to be relatively independent of the pore size or t
perature. We believe that this is due to the local relaxation
the liquid structure, especially near the pore walls where
liquid is highly ordered. Since all the systems we have sim
lated cross over to the power law growth at nearly the sa
time, this relaxation seems to be unaffected by tempera
or pore size. Since this relaxation isslower than the energy
relaxation due to phase separation, we note that the ph
separation process apparently does not begin until the liq
is mostly relaxed at the lower temperature.

Lastly, the coarse-grained domain profiles from t
quench studies suggest that the principal domain gro
mechanism at all but the earliest times is the condensatio
neighboring domains. This process is not very visible in
smallest pore, which is the only pore for which the kine
slowing at late times isnot observed, which suggests that
the smaller pores~or pores close to their critical tempera
tures! there is a second growth mechanism.

In summary, we have studied a binary fluid mixture a
sorbed in simple cylindrical pores by quench molecular d
namics, histogram-biased semigrand Monte Carlo, and
nonical Monte Carlo simulations. We have characterized
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3196 56LEV. D. GELB AND K. E. GUBBINS
effects of both quench temperature and pore size on the
netics of phase separation in these systems, and found
while our results support some of the predictions of ear
work in larger pores, for sufficiently small pores these p
dictions break down. We have also applied a simple therm
dynamic model to calculate the equilibrium domain sizes
these systems from histogram simulation results, and fo
reasonable agreement with direct simulations.
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