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Liquid-liquid phase separation in cylindrical pores:
Quench molecular dynamics and Monte Carlo simulations
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We have studied the liquid-liquid phase separation of a binary mixture confined in three different cylindrical
pores by several simulation methods. The phase diagrams of the fluid mixture in the three pores were deter-
mined using histogram-biased semigrand Monte Carlo simulations, and the kinetics of phase separation of the
confined liquid mixture were studied using quench molecular dynamics. In these systems, the interactions
between the two fluids and the pore wall are identical so that no wetting occurs and the fluid separates into a
series of pluglike domains after a temperature quench. We have determined that the growth of these domains
is given by a power law for systems near to their critical temperature, while for deeper quenches it proceeds by
a power law at short times which crosses over to a slower growth when the plug-shaped domains are large
enough to completely block the pore. Domains in these systems are shown to grow by a condensation mecha-
nism. Using a simple thermodynamic model we analyzeRlX) probability distributions from our Monte
Carlo simulations, and estimate the equilibrium domain lengths in two pores over a range of temperature.
These lengths are larger than those reached in our molecular dynamics simulations. In order to assess these
estimations, we have performed very long canonical Monte Carlo simulations to directly determine the equi-
librium domain lengths in a few of these porgS1063-651X97)00709-3

PACS numbg(s): 64.70.Ja, 47.55.Mh, 61.20.Ja, 64¥8.

[. INTRODUCTION which does not rely on a mapping to a known model, is the
“single pore model” developed by Liet al. [3]. In this
When fluid mixtures are confined in very small spacesmodel, macroscopic mean-field level thermodynamics are
their behavior is quite different than in the bulk phase. Theused to predict a “plug-tube-capsule” phase diagram for the
liquid-liquid miscibility phase diagram for an adsorbed mix- Phase-separated fluids in a single cylindrical pore. In the
ture can be very different from that of its bulk counterpart,Plug “phase,” the kinetics of late-time phase separation are
and in sufficiently small spaces the liquid-liquid transition Very slow because of the large collective motions required to
can be suppressed entirely. Since microporous membran§§ndense two domains into a single domain. That is, in a
and adsorbates are routinely used in industrial separatiorindle pore filled with alternating plugs of two liquids it is
processes, understanding these effects is important in devef€"Y difficult t?, cor'1de”ns.e two like p.Iugs into a larger one
oping new separations technologies. ecause the “unlike” liquid separating them must be re-

Microporous systems are difficult to study experimentallymoyt?d .f'rSt' In capsule phases this IS not a problem, and
because the pore structures of most of the commonly used _u_|||br|um should be reac_hed more qupkly. The free energy
iving force towards this condensation decreases very

membranes and adsorbates are quite complex and difficult ickly with increasing plug size because the effective at-

determine, so that these materials are not well characterizg ction between two plugs decreases exponentially with
at the molecular level. Furthermore, many common adsorgejr separatio{4]. The evaporation-condensation mecha-
bents have amorphous strugtures with broagl dlstrlbgtlons Hism responsible for droplet growth in the bulk phase is
pore sizes and shapes, which makes a microscopic undegearly negligible at later times in cylindrical pores, since the
standing of fluid behavior in these systems very difficult.  syrface tension of a single cylindrical plug becomes nearly
In addition to strongly affecting the liquid-liquid coexist- independent of its size as soon as its two surfaces are far
ence curve, confinement in small pores changes the kinetiegshough apart that they do not “see” each other. Several
of liquid-liquid phase separation. Many studies indicate thatMonte Carlo studies of the confined Ising model using Ka-
in quenching experiments these systems rarely achieve maarasaki spin-flip dynamics have noted these effects in a quali-
roscopic phase separation and instead become “frozen” inttative way|[5,6.
partially phase-separated states, with many small domains of Relatively few molecular dynamics simulations of the
each phase that are kinetically prevented from further conphase separation of liquid mixtures in pore systems have
densation. been done. There have been several studies of two-
There have been two phenomenological approaches to ddimensional mixtures of simple spherical partic[§s-10];
scribing these effects. The first approach maps(éissumed these systems usually have an entirely repulsive interaction
random pore network onto the random field Ising model between unlike species. These studies have focused on de-
[1,2], and these studies have had some success. Howevéermining growth exponents and deviations from predicted
this intuitive mapping breaks down for fluids in very regular scaling behavior. However, two-dimensionally infinite sys-
pore structures, which show the same kinetically limited betems are not comparable in these respects with one-
havior as observed in amorphous pores. Another approackjmensional systems like cylindrical pores, for reasons
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which we explain below. Zhang and Chakrab4itl] used not only will the equilibrium state of such a system be a
molecular dynamics to study the phase separation of a twaseries of alternating domains, but that these domains will
dimensional fluid of this type in narrow channels. Theyhave some characteristic length which will vary with the
found that the interfacial energy relaxed with time accordingtemperature of the system. This length can be large enough
to a power law with an exponent near0.3 for times up to  that it does make sense to speak of phase separation in these
1000 time units, which they attributed to purely diffusive systems, since under certaif,K) conditions the two liquids
growth. In simulations in unevenly shaped pores they foundvill form long (but not macroscopjcdomains which have

a crossover to a faster growth at later times which was atwell-defined properties per unit length. This has been dem-
tributed to hydrodynamic modes becoming important in theonstrated in both experimentd1-24 and simulation stud-
larger parts of the pores. We might expect that at even longaes[11,25,12,2& Rather than attempting to determine a true
times the growth would slow again, as the asymptotic limitphase diagram by mapping out first-order transitions and a
of the single pore model is reached. In a three-dimensionatritical point, we can only determine the region of tiigX)
study, Zhang and Chakrabaffi2] studied a similar mixture plane for which this “micro-phase separatiofi24] occurs.

in a cylindrical pore with dimensionsR=8.70 and These systems do not have true critical points, but do have a
|,=69.60 and observed a kinetically limited phase separatemperature where the correlation length grows to a maxi-
tion qualitatively similar to that found by Monte Carlo Ising mum and the otherwise orderly arrangement of domains in
model simulations. the pore fluctuates strongly. Above this “pseudocritical

Muller and Paul[13] and Albanoet al. [14] performed point” the domain structure vanishes and the system be-
extensive Monte Carlo simulations of the Ising model in acomes homogeneous along the pore axis. In computer simu-
two-dimensional strip geometry using Glauber dynamicsjation studies it is usually possiblexcept very near the top
which do not conserve the order parameter. These simulaf the coexistence envelopéo choose the periodic cell
tions show that phase separation in this system is entireliength short enough that this micro-phase separation is sup-
diffusive and can be described well by an “annihilating ran-pressed, so that we can characterize the homogeneous phases
dom walk” model, and that the average domain size growdlirectly.
in time ast/? for the full length of these simulations. Unfor- At temperatures low enough that the correlation length is
tunately, these dynamics do not describe real liquids verynuch smaller than the pore diameter, these systems behave
well and we expect that this picture will not hold for more like binary mixtures in three dimensions. The width of the
realistic models. coexistence envelope at these temperatures is fit well by the

Using a Lattice-Boltzmann approach, Grunetual. [15]  three-dimensional Ising power law prediction, and in simu-
studied the phase separation of a binary fluid in a strip gelation studies this can be used to estimate the “pseudocriti-
ometry. These calculations support the prediction of thecal” temperature and mole fraction. For very low tempera-
single pore model that phase separation slows dramaticaltyires the Ising prediction fails for pore systems in the same
when the domain size becomes as large as the pore siagay that it does for bulk systems. In the work that follows
There have also been several numerical studies of twowe shall refer to “effective” coexistence curves, phase sepa-
dimensional confined fluid mixtures using a Cahn-Hilliard ration, and critical points, but it should be understood that
approach, which predict similar behavior, and have also beethese systems do not undergo first-order transitions and do
used to study the effects of wetting on the phase-separatiamot have true critical points, and only show micro-phase
procesg16-18. separation and the remnant of critical behavior.

From a thermodynamic standpoint, the particular case of We have studied a symmetric Lennard-Jones binary mix-
infinite cylindrical pores is difficult to deal with in simulation ture confined in a smooth cylindrical pore by a variety of
studies.(In experimental systems there are no sufficientlycomputer simulation methods. We have used histogram-
“infinite” straight cylindrical micropores for this to be a biasing techniques in the semigrand ensemble to determine
problem) It is not possible for a system that is macroscopicthe phase diagrams of the mixture in three different cylin-
in only one dimension to exhibit macroscopic phase separaders, and found that the effective critical temperature is low-
tion, because such a system is unstable with respect to foered as the pore diameter is decreased. We have performed
mation of small domains of each phase. That is, in a confinedeveral very large quench molecular dynamics simulations in
system like a cylindrical porébut not a planar poretwo  order to test the predictions of the single pore model in a
phases will not separate into two very large domains sepaealistic system. We have found that the predicted slowing
rated by one interface but will form a large number of smalldown of domain growth does occur, provided that the pore is
domains. The reason is that in a long narrow pore of lengtliarge enough and the quench temperature is deep enough.
L, the entropy associated with creating a “plug” of one do- Interestingly, even in these systems we have seen a slow-
main inside the other varies as I)( so thatTAS will be  growth mode at later times that is due to the slow diffusion
larger than the free energy of the two surfaces of the plugand condensation of relatively large domains. For smaller
for large enougtL. In two- and three-dimensional systems, pores and mixtures near to their effective critical points the
the surface tension of a domain grows with its size, so thapredictions of the single pore model break down, and do-
large domains are more stable than small ones and macroiains grow by a simple power law well into the asymptotic
scopic phase separation occurs spontaneously. In quasi-onregime(where the domain length is considerably larger than
dimensional systems the surface tension of a large plug ithe pore diameter
nearly independent of its size and there is no driving force This study is part of a continuing effort to understand the
towards further phase separation. properties of fluid mixtures in well-characterized porous ma-

In fact, simple thermodynamic modg!s9,2Q predict that  terials. Some of the quench results presented here have ap-
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peared previously25] but are shown with more recent re- previously been used to model argon adsorbed in pores of
sults for easier comparison. In the current work, we havesarbon dioxidg 28,29. This potential is considered “weakly
verified that these systems are only kinetically limited andattractive” when compared with strong adsorbates like po-
that the growing domains have not reached their thermodyrous carbons.

namic equilibrium length. We have made a series of calcu- We have studied three different cylindrical pore systems
lations of the probability distribution of the mole fraction, and one bulk system as a reference. We have chosen the pore
P(X), in differentlengthsof pore and applied a very simple sizes and numbers of particles so that the “effective” den-
thermodynamic model to these data to estimate the equilibsity in each pore(and the bulk systejnis the same,
rium domain lengths, and found that they are considerably.;=0.838 3. The effective density is defing@rbitrarily)
longer than those observed in all of our quench simulationshy the effective radiusR.s=R—¢/2, which roughly ac-

It does not appear that any of our quench trajectories couldounts for the volume of the cylinder excluded by the wall-
be extended to long enough times that these equilibrium ddfluid potential. The three pore systems used have r&iiof

main lengths could be observed directly, although this mayo, 50, and 7o; all the pore-fluid potential parameters were
be possible in a faster-equilibrating system. the same for the different pores.

In order to test the predictions of the simple thermody- In all of the results that follow, we quote quantities in
namic model, we have attempted to directly measure théennard-Jones reduced unif80]. For potentials of the
equilibrium domain length in our smallest pores at several.ennard-Jones type, the reduced temperature is expressed in
temperatures by canonical Monte Carlo simulations usingnatural” units of e/kg. Likewise, the natural unit of length
particle-exchange moves that greatly speed this equilibrations ¢, and the reduced time is measured in units of

These calculations yield domain sizes similar to those deter;= \/e/ma?, with m being the mass of a particle.
mined from histogram data, but somewhat larger. We con-

sider possible reasons for these differences.
Ill. CALCULATION OF PHASE DIAGRAMS

4Eij

Il. PORE MODEL AND POTENTIAL FUNCTIONS A. Histogram-biased semigrand ensemble method
The fluid mixture in these simulations is a symmetric bi- For the case of a binary mixture in a pore, Monte Carlo
nary Lennard-Jones mixture, given by the potential functiorsimulation in the semigrand ensemble is essentially a con-
stant (T,p,Au) calculation[31,32. That is, thenumber den-
i 12 i 6 _ sity of particles is held fixed, but thenole fractionof the
Uii(r)= T T\TF T Ujj(re), rsre 1) particles is allowed to vary. This is accomplished by includ-
g ing Monte Carlo moves that attempt to change a particle of
0, r=re one species into a particle of the other species. This en-
: . . semble is very convenient for studying liquid-liquid transi-
W_heTeUii(_f) is the potential _between two part|c_les of spe- tions because it does not require particle-insertion moves,
ciesi andj separated by a distance The properties of the  \nich are inefficient at high density, or volume-change
m!xture are determined by the; .and ojj parameters. Th(_e moves, which are expensive.
mixture that we have studied is symmetric, with |5 order to determine the phase coexistence curve we use
T11= 029= 012~ 0, Andey; = 5= €. To induce liquid-liquid 5 mogification of the method used by Wilding to calculate
phase separation we weaken the unlike-pair attractive wehg jiquid-vapor coexistence curve of the Lennard-Jones fluid
depth by setting:,=0.65¢y;. In this system particles have a [33] \hich is an application of the more general “multica-
slightly different “excluded volume” with respect to each \gnical” approach to Monte Carlo simulati¢84]. First, we
species, which is not physical for species of identical diam'perform a standard run at a temperature slightly above the
eter. We stress that this potential is used for reasons of Si”b‘xpected critical point. Over this run we accumulate a two-
plicity and calculational convenience, and only roughly aP-dimensionalhistogramof the mole fraction and the energy,
proximates a real binary mixture. The potential is “cut andyy (x £). The entries in this histogram will be proportional
shifted” at a distance .= 3a, where its value is only about 14 the probability of observing states with that mole fraction
0.0%e. This short-range truncation of the potential greatly 5., energy:Py(X,E)<Hy(X,E). The probability distribu-
decreases the amount of work that must be done in each steg, function will depend on the system size. In the semi-
of the calculation, since only relatively close pairs of mo"grand ensemble,
ecules have nonzero interactions.
The pore that we use is a cylindrical hole cut out of an 1
infinite solid of Lennard-Jones particles. By treating the solid Pn(X,E) =5}exp(,8A,uXN—,BE)WN(X,E), 2
as a continuum of fixed density, the interaction between the
adsorbed molecules and the pore can be calculated as a func- . . . )
tion of radial position in the pore by using a one-dimensional’VN€reY is the appropriate partition function aiiy(X,E)
lookup table[27]. (The integral over the three-dimensional is tht_—? microcanonical density of states foparticles at mole
solid can be solved analytically in two dimensions, but thelfaction X and energye. (If Au= ;- p, thenX=X,, the
third reduces to an elliptic functionThe potential used in Mole fraction of component 1L Factorial terms due to the
this integration is not truncated, i.e,=c. indistinguishability of particles[31] are subsumed into
The interactions between the fluid and pore are given byVn - Therefore
E1w= €E2w™ 1.277 and g1wW= Oow= 1.0945. In addition, the
density of the solid wall is 0.988 3. These parameters have Hn(X E) cexp( BA uXN— BE)Wy(X,E) 3
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FIG. 1. Biased, unbiased, and symmetrized histograms from an FIG. 2. (T,X) phase diagrams for all three pore systems studied.
N=300 run atkgT=0.95¢ in the 30 pore system. The raybiased The open symbols are measured points, while the solid lines are
output histogram, bias-corrected histogram, and symmetrized biagsing-like fits to the data.

corrected histograms are shown superimposed. All three histograms ] ] o
have been normalized to unity. system. In order to avoid spurious effects from periodic

boundary conditions along the pore axis, we have chosen the
and we can use this expression reweightthe measured pores to be considerably longer than their effective diam-

histogram to a temperature slightly below the critical point: eters; the pore lengths wekg=30.375%,18.7%,13.5%, and
10.64, in the 3o, 50, 70 and bulk systems. The number of

HNOGE) groap S , particles used wadl=500, 1000, 1500, and 1000, respec-
erxd(ﬁ Ap'—=BAu)XN—(B'— B)E]. tively.
A (4) Histograms were taken in temperature steps of

kgAT=0.05 reduced units according to the procedure de-
We then collapse the new histogram onto a one-dimensionaicribed above, with at least 580.0° Monte Carlo moves
histogram inX: H{(X)=2gHn(X,E). We can use this new (mostly identity-exchange movesun for each temperature.
histogram as &iasing potentiain a second Monte Carlo run Since these systems are quick to equilibrate due to high ac-
at the lower temperature. Inside the coexistence region theeptance ratios for the identity-exchange moves, we typically
Pn(X) distribution has two peaks, which correspond to theran ten or 15 short independent simulations in parallel, aver-
coexisting phases. In a standard simulation the tunneling ra®ging all the data after a few million moves equilibration
between these peaks is very small, so that only one peak ¢ime. These calculations were run on the IBM SP2 at the
the other is found in a single simulation. By including this Cornell Theory Center. The resulting bias-corrected histo-
biasing potential we remove the barrier and sampi¢h  grams were symmetrized aboMt=0.5 and used to deter-
peaks and the region in between. In the calculation we germine P(X) curves at temperature increments of
erate states distributed according to XN  kgAT=0.0l¢, from which the phase diagrams were calcu-
— BE)/H{(X). At the end of the simulation, having collected a lated. The peak positions were determined by fitting the his-
new Hy(X,E) histogram, we correct for the bias by multi- _togram data near each peal§ to Gaussian functions and locat-
plying theith row of Hy, Hy(X; ,E), by H{(X;). In exactly ~ ing the peaks of the Gaussians.

symmetric systems the(X) distribution should be symmet- 'In order t'o locate the critica}I point, we calculated th_e co-
fic aboutX=0.5, and we may average the two halves of the€Xistence diameter as a function of temperature and fit these

distribution to improve statistics. As an example, a set ofdat@ to the three-dimensional Ising-model predictiG.

biased, unbiased, and symmetrized histograms from a calc{{Ve Stress that this procedure is only an approximate way of
lation in a 3 radius pore system are shown in Fig. 1. In locating theeffectivecritical point for the cylindrical pore

asymmetric systems the coexistence chemical potential difYStems. In bulk systems this is a fairly accurate way of
ference is not trivial and we can determine the coexistencg€termining the critical temperatuf88], provided that data

chemical potential difference by reweighting the histogram N€&r" to the critical temperature(in our case, usually
within about 0.07 temperature unjitare not used in the fit.

in the A direction until the volumes under each peak are ; -
equal: this is theequal-weight criterionfor the coexistence _ 1he phase diagrams for all four systems are shown in Fig.

point[35]. This must be done at each successive temperatw?e The estimated critical temperatures for these systems are:
step. This procedure can be repeated down the coexistenfdlk phase kgTc=1.64¢; 30 cylinder, kgTc=1.1%; 5o

line in large steps, so that five or six simulations can covefY!inder, kgTc=1.28; and 7o cylinder, kgTc=1.33. As
most of the liquid-liquid coexistence regi¢ae]. the cylinder size is decreased, the critical temperature is re-
duced considerably. Note that these different systems are

comparable only in density; at a given temperature, their
internal energies are quite differeiotue to the different radii

We have calculated phase diagrams at fixed density in thef the pore-fluid potentia)sso that the confined fluids are not
(T,X) plane for all three pore systems and the bulk referencén equilibrium with each other.

B. Phase diagrams
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IV. QUENCH MOLECULAR DYNAMICS 0.4

We have performed five different quench experiments in
this study. Some analysis of two of these runs was published
previously[25]. Three of these runs were done to determine
the effects of quench temperature on the domain growth pro-

A
cess; these three were rurkgl =0.75¢, 1.00, and 1.1@ in § N
the 3o pore. We have also run trajectories i &and 7o 3 R
pores atkgT=1.0C, to determine the effect of increasing ¥ | X~ . / . t=0t
pore size at fixed temperature. — =75
~~~~~~ t = 300t
——— t=600t
—-—- t=9007
A. Details of molecular dynamics calculations
—0.4 . .
In each quench study the system was equilibrated at a 0.0 5.0 10.0 15.0

high temperaturekzT=5.0¢) for at least 30 000 time steps 20

using a Gaussian isokinetic thermostat. The system was then g, 3. Autocorrelation of local selectivity, for several times in
quenched to a temperature in the two-phase region in fhe k,T=0.75 quench run in the & radius cylinder system. At
single step by changing the thermostat temperature, and th&er times, the position of the first minimum moves to largeaind
integration was continued for between 600000 andhe amplitude of the oscillation increases. Theliscretization is
2.25x 10 more time steps, still using the Gaussian thermo-0.25s; the small oscillations a=2.5¢ are due to correlation in the
stat. The length of a single time step was 0.208nd we liquid structure.

used a third-order Gear finite difference algorithm for the

integration. (Equilibrium calculations were also done with p1(Zt) —pa(Z,1)
fifth-order Gear algorithms, and we could detect no differ- n(z,t)= T o 0 ()
ence in the fluid properties between these two algorithms. P17 P2

The data shown for the singles5system are an average W
over nine independent runs of smaller systems of Iengtrl at positionz pg is the system-averaged density of compo-
187.5 (N=10 000). The data ShOV_V” fqr thiyT=1.00e, nt 1, etc. We then calculate the autocorrelation function of
30 system are an average over eight independent runs g

2 77 in thez direction,( 7(z,t) 7(0t)). The position of the first
smaller systems of length 562:5(N=9258). The other \ninimum of this function, referred to aét), is characteristic

three systems were run as single trajectories, each witht the domain size and is the one-dimensional analog of the
N=100000.l, in the 37, 50, and 7 pores was 60758  gcaling form used in two and three dimensidi@é As an
18750, and 90@, respectively. example, a set of autocorrelation functions from the quench
All the quench calculations were done with a parallel mo-tg ksT=0.75¢ in the 3o radius pore system are shown in
lecular dynamics code based on a one-dimensional domairig. 3. Large-scale simulations are necessary because the
decomposition algorithm. For the smaller systems studieduality of data is determined by the number of domains,
(N=10 000) we used 15 or 20 processors, and for the largawhich is much smaller than the number of particles. We have
(N=100 000) systems we used 64 processors. In the largattempted to use cluster-counting routifd6] to determine
systems, we could typically get between 250000 andhe distribution of domain sizes, but found that because of
300 000 steps into a single 20 hour run, depending on ththe relatively diffuse interfaces these definitions were ex-
pore diameter. These calculations were all run on either theemely sensitive to cutoff parameters and were not reliable.
IBM SP2 at the Cornell Theory Center or the Cray T3D at In order to visualize the domain growth process, we also
the Pittsburgh Supercomputer Center. The total CPU tim@lot & coarse-grained one-dimensional mole fraction as a
used by the quench calculations was approximately 18 oofinction ofz and time. That is, we average the mole fraction
hours. in a 1o section of pore over a few hundred time steps; if the
We have used two different measures to monitor thdotal average is greater than 0.5, we plot a point, if it is Iess
phase-separation process. The firdE{$) — E, the total po- than 0.5,.we leave a space. These "‘snapshofts” are then. laid
tential energy per particle of the system relative to a fuIIySlde by ‘Qf'de’ as shown in Fig. 8. This format is a convenient
relaxed state, the homogeneous phase at saturated concent!qy to V|_suaI|ze a large number of large molecular configu-
. e . ; . rations side by side.
tion. After an initial decay of transients this quantity effec-
tively measures the interfacial area in the system, which is o o
inversely proportional to the domain size for these systems. ~ B- Variation of quench behavior with temperature
The reference state energy for each pore system was deter- The domain sizes as functions of time for the three
mined in a separate simulation, using a canonical Montguench experiments in thes3radius pore are shown in Fig.
Carlo run in a short cylinder at a mole fraction determined4. At short times, all three curves follow a power law
from the phase diagrams measured earlier. growth, with larger exponents for higher quench tempera-
The second measure is the average domain size. We cémes. The short-time growth exponent in thgT=0.75
define a local selectivitydependent on time and tlzecoor-  quench is 0.2120.006, in thekgT=1.00¢ quench it is
dinate by 0.212£0.003, and in thekgT=1.10e quench it is

herep,(z,t) is a short-time averaged density of component
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FIG. 4. Growth in average domain sizét) with time after FIG. 6. Average domain sizgt) vs time after quench, for all
quench, for the 3 cylinder atkgT=0.75¢, 1.0C, and 1.1@. three cylinders akgT=1.0Ce.

0.254+ 0.007. As the temperature is increased, It data terminingE, requires knowing the saturation concentrations,
so that small errors in our phase diagram calculations may be

becomes noisier. This is caused by increasingly diffuse do: I . .
magnified into large errors in our energy relaxation expo-

main boundaries and larger fluctuations in the liquid. At later '
times, thekaT=1.00¢ and 1.1@ quenches continue to fol- nents. Although the data may be fit well by the power law,

low their early-time power law growth, while the deepestthe uncertainty in the exponent calculated fronyZfitting

rocedure does not reflect this possible systematic error due
guench crosses over to what appears to be a second power

law with exponent 0.1190.004. (Over this range of time O the use of a reference energy.

these data are fit well by a power law form; at later times the From the quench data at different temperatures, we con-
yap ' clude that the growth exponents in these systems are weakly
growth may slow furthey.

The corresponding enerav relaxation data for all threedependent on temperature, and that the presence of a cross-
resp 9 9y R over to a slow mode at late times only occurs if the tempera-
guenches in the @ pore are shown in Fig. 5. These data

o is f h below the critical point that the interf
show the same qualitative trends as t8) data for these ture is far enough below the critical point that the interfaces

X . between domains are well defined on a small length scale.
systems. The short-time relaxation exponents are

—0.255+0.001,—0.216+ 0.005, and-0.327+ 0.002 for the
kgT=0.75, 1.0C, and 1.1@ quenches, respectively. The
energy relaxation exponents for tkgT=0.75%, and 1.1@ The average domain sizes as functions of time after the
guenches are slightly larger than expected. The late-time exguench for all three systemsledT=1.00e are shown in Fig.
ponent for thekgT=0.75 system is—0.122+0.004, in 6. In all three pores the domains grow according to a power
good agreement with thi€t) data. law at short times. The exponent for this growth in the 7

In all of these quench experiments, the relaxation expoeylinder is 0.35-0.01, the exponent in thed5cylinder is
nents measured from the energy data depend strongly on ti#e27+0.01, and the exponent in the o3 pore is
choice of reference enerdy,. Because the two fluid com- 0.212+0.003. For larger pores, the short-time exponent is
ponents are reasonably soluble in each other, accurately dirger. This can be compared with previous simulations of
bulk phase-separation behavior, in which the domain size in
critical quenches was found to grow with a much larger ex-
ponent. Maet al. measured a value of (0.1 for this ex-

05 | ﬂ:?ggi ] ponent[39], while more recentand largey simulations of a

== o k§T= 1.10¢ slightly different system by Laradgt al. found an exponent
of 1.0[40]; the discrepancy may be due to the two simula-
tions reaching different asymptotic behaviors at different
times[40].

At later times, in the two larger pores there is a distinctive
slowing in the growth rate. In the largero7system this
crossover is quite sharp and occur$(d)=11o, while in the
smaller 5 pore it happens more gradually, beginning when
[(t)=90. In the smallest cylinder the original power law
behavior persists unchanged to the longest times we were
‘ ‘ ‘ able to simulate.

50 6.0 I:(?) 8.0 9.0 The corresponding energy relaxation data for the three
systems akgT=1.00¢ are shown in Fig. 7. The same gen-

FIG. 5. Energy relaxation vs time after quench, for the &I- eral trends occur in these data as in tf® data; for larger
inder atkgT=0.75¢, 1.0C¢, and 1.1@. pores, the crossover to slow relaxation at later times is

C. Variation of quench behavior with pore size

In[E()-E,]
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0.0 i i i 200.0

o 3o cylinder
o 56 cylinder

> 7c cylinder 150.0 |

Eo —_—
= £ 100.0
o N
<
50.0
-25 : : :
5.0 6.0 7.0 8.0 9.0
In(t)
FIG. 7. Energy relaxation vs time after quench, for all three 200.0
cylinders atkgT=1.0C. In order that the data not overlap, the
70 pore data have been shiftad by 0.5 and the & pore data have
been shiftecup by 0.25. 150.0 -
sharper and the initial relaxation exponent is larger. The ex
ponents for the energy relaxation in the three systems ar 5
—0.216+0.005, —0.32+0.01, and—0.426+0.002 in the ~ 1000 F

30, 50, and 7o systems, respectively. As the pore diameter
is increased, the agreement between the domain size ar
energy relaxation exponents becomes poorer. This fast rela: 50.0 |
ation of the energy may be caused by the gradual crossove

from three-dimensional to one-dimensional growth. As do-

mains grow to block the width of the pore, their liquid-liquid
interfaces are quickly replaced by liquid-solidore inter-

faces, as their shape changes from irregular to cylindrical

So, as large, irregularly shaped domains become cylindrice 200.0
plugs their contact area with the other phase is greatly re
duced, even though their average length may not chang
much. In fact, the ratio ofabsolut¢ exponents in the &

pore is only about 1.18 to 1, while in ther7ore the ratio is

1.22 to 1, so that this is not an extreme effect. The®re
appears to be within the one-dimensional regime, and thi &
exponents agree.

1000.0
time (1)

150.0

D. Domain growth mechanism 500

In Fig. 8 we plot coarse-grained domain profiles of the
three quench trajectories &5T=1.00¢, in order to deter-
mine the mechanism of domain growth at later times. At
short times, each system consists of a large number of sme 0.0 500.0 1000.0 1500.0 2000.0
domains which quickly condense into slightly larger do- time (1)
mains. At later times it is clear that in thes5and 7o pore
systems all further growth occurs via a relatively small num-_ "™
b)ér of condensatior? events, where two neighbgring domaingtion in the @ 3o, (b) 50, and (¢) 7o pore systems at

merge into one larger domain. In the smallest cylinder, this pT=1.0Ce. The black bars are domains rich in one component,
9 9 ) y ! white spaces domains rich in the other. Bhaxis is the simulation

Process 1S not_ as obvious. Since domain growth in this Sys1'ength; each pore “snapshot” is an average over 500 steps, at a
tem occurs with a smaller power law exponent but over aspacing of 15 000 steps between snapshots

longer length scale, we believe that there must be a relatively

SIO\.N transfer O.f mass from smaller domains to larger dO'data every 50 or so time units, we do not observe this there.
mains by diffusion.

The short-time energy relaxation data for all five trajectories
are shown in Fig. 9. All the curves have a very similar shape,
and all of the systems begin to follow simple power law

We have noted that for very short times the energy relaxrelaxation at about the same time after quenchirg]50r
ation in all five quench systems does not follow a power law{In(t)=5]. This relatively slow relaxation at short times may
but a more complex fornm.Since we only measure thét) be due to the aftereffects of the very fast quench-a, so

FIG. 8. Coarse-grained domain profiles from the quench simu-

E. Short-time relaxation of energy
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where the surface tension and scale factor have been ab-

sorbed intcC. So, if we can determinE —F, andC, we can
determine the equilibrium domain length. By differentiating
-05 . . .
\\\ the above expression with respectrtave end up with
30, £,T=0.75¢
70, k;T=1.00e
—3 ok T1.00 JdF—F n
LIIJ \\\\ 56, kyT=1.00; ( 0)=C+T+T|n _I), (9)
% 36, k,T=1.00e an L
T 15
which we set equal to zero, and get
30, k,T=1.10x | L/ T+ C 10
0, kT=1.108 nf—|=——.
n T (10
-25 . : : ‘
0.0 20 40 6.0 8.0
Int) B. Calculation of equilibrium domain sizes

from histogram data
FIG. 9. Short-time energy relaxation data for all five quench . . .
runs. The energy relaxation for the first 50 time units is quite slow, V€ €xpect that the equilibrium domain length in a phase-

followed by a gradual crossover to linear behavior at aroundSeParated system, although microscopic, will be large on a
t=150r [In()=5]. molecular scale. Therefore in a small system at equilibrium

there would never be more than two domain wadle that

that the “local” liquid structure in these systems takes aboutthe system is fully phase separatetive can apply this

this long to equilibrate at the quench temperatures. For thi%?up;eofrg’dﬂ“?h S;;}%uz ;gsitsdrg aer:%gnsteo;t stos'::earlrfiliazltee fghre
reason, in all of our curve fitting to the energy relaxation ' P Y

data, we have only used the data taldter t= 1507 systems long enough that the interfaces do not strongly in-
' ' teract.

From the histogram-biased Monte Carlo simulations de-
V. ANALYSIS OF P(X) HISTOGRAMS scribed above we have determinB@X) in many such sys-
A. Simple theory of one-dimensional behavior tems. These histograms all have similar shapes. There are

The thermodynamics of one-dimensional systems of moI:[WO peaks, one corresponding to each phase, and a broad,
moayr : : sy .very flat region between the two peaks, which corresponds to
ecules having finite-ranged interactions prohibit macroscopi

phase transitions. The classic argument for @] is that f)hase-separated states with total mole fractions between

we can write the free energy of a two-phase Onethose of the two homogeneous phases. @fea of this re-
: . . . b ‘gion i ional to the f f the phase-
dimensional systentignoring effects from interactions be- gion is proportional to the free energy of the phase-separated

tween interfacesas system. Sin_ce the areas of the singl_e peaksch are equal
are proportional to the free energies of the homogeneous
n phases, the ratio of these areas gives us the free energy dif-
F—FoznTIn<e—L)+ny, (6) ferenceF —F,. More specifically, if P is the area of the
interfacial region andP is the area of one of the peaks, then
F—Fo=—TIn(P/Py).
where L is the length of the systenm is the number of In practice, we estimate the area of the interfacial region
interfacegand in a periodic system, the number of domgins by multiplying the height of the normalized histogram at
and v is the surface tension. The logarithmic term is themidpoint by the distance between the two equilibrium peaks;
entropy due to the motion of the domairis, is the free  P=H,o(X,—X;). That is, the interfacial contribution to the
energy of the fully relaxede.g., phase-separajegystem. full P(X) distribution is assumed to be rectangular. Since we
For largeL, the entropy associated with domain motion will are only considering symmetric systems andRiX) distri-
always be larger than the total surface tension, so that madution is normalized, the area of one peak is then just
roscopic phase separation will not occur and the system wil{1—P)/2 and the calculation of is simple, since we know
consist of microscopic domains of some equilibrium lengththe pore lengtiL’ in reduced units and there are two inter-

L/n. faces.

In order to estimate the average size of these domains, we
introduce a scale factor to fix the units &f by setting C. Results
BL'=L we get

In the 30 cylinder we have obtaineB(X) histograms for
kgT=0.95¢, 0.97%, 1.0C¢, 1.02%, and 1.0%, in pores with
N=100, 300, 500, 700, and 900I,£6.07% through
+ny (7)  1,=54.67%). All of these histogram runs were of lengths
similar to those used for the phase diagram calculations. In
Fig. 10 are some of thB(X) distributions from these runs.
The histogram peaks show the expected behavior; as the sys-
(g tem is made larger at a single temperature the peaks become
sharper and shift to slightly higher mole fracti¢al,42,

F—Fo=nTin

n-I—TI !
?nnB—e

n
=n| TIn| —|+C
LI
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N=100 N=500 N=900 N=1000
10.0 T T . 10.0 T
—— k,T=0.95¢ —— kT=1.15¢
—— 4,T=1.00¢ — k,T=1.20¢
— §,T=1.05¢ — 4, T=1.25¢
8.0 8.0
6.0 - 6.0 |
3 3
o a
4.0 | 4.0
20 20
|
0.0 - 0.0
0.00 0.256 0.00 0.25 0.00 0.25 0.50 0.00 0.25 0.00 0.25 0.00 0.25 0.50
X X X X X X

FIG. 10. Bias-corrected histograms from the thermodynamic FIG. 11. Bias-corrected histograms from the thermodynamic
study of domain sizes in theo3pore system at several tempera- study of domain sizes in thedspore system at several tempera-
tures. Three differentkengthsof pore are shown, containing 100, tures. Three differenengthsof pore are shown, containing 1000,
500, and 900 fluid particles. 2000, and 3000 fluid particles.

domain size, if any. For instance, in ther Jore at
g1 =0.9%, the values of C calculated in the
N =300, 500, 700, and 900 systems were 3.82, 3.88, 3.86,
Iz?nd 3.89, respectively. For each temperature in e8re,
we have used the average value®bver these systems to
determine the equilibrium pore lengtfin the 50 pore, we

while as the temperature is raised in a single pore the pea
become broader and the peak location moves toward
X=0.5, its critical value.

In the two larger systems, the region of the curve betwee
the two peaks is visibly flat, as predicted by our simple
model. As the temperature is raised, tR€X) value at the
midpoint of this flat region increases, indicating that the@ve averaged over tfé=1000, 2000, and 300C values)
probability of observing the system in a two-phase state is | € estimated equilibrium domain lengths from these cal-
increasing relative to the probability of observing it in a one-culations are shown in Fig. 12, along with equilibrium do-
phase state. As the temperature is brought near to the criticJiain éngths determined from direct Monte Carlo simula-
temperature, especially in the largest pore, the flat regioHons (described in the next sectiprA logarithmic scale is
aroundX=0.5 begins to bulge upwards. This is caused byused to _ShOW all the d_ata on one graph. In the smaller pore
there beingmore than twodomains in the system; near the € €stimated domain sizes range frofg,=158r at
critical temperature the domain length can be fairly smallKeT=0-9% t0l¢=24.7r atkgT=1.0%. In the larger pore

and forX near to 0.5 there might be, say, four domains in thethe equilibrium domain lengths are much larger at these tem-

periodic system. FoX further away from 0.5, these “extra” peratures but become quite small near to the critical tempera-

domains would have to be very small. Due to the nonzerd!'® ranging from K100 atkT=1.05 down to 24.9 at

width of the domain interfaces in the real system this is unXeT=1.2%, only slightly below the critical temperature.
favorable, so that “extra” domains only contribute to the These lengths show that none of our quench molecular dy-

entropy neaX=0.5, and we see a broad peakR(X). At namics runs were near to their equilibrium states at the end
lower temperatures this does not occur because the domain

) - 15.0 ‘ g

lengths will be much larger and these relatively short pores 0§ccv:gncdier e
. . *

will only hold two domains. . . 5o oringar

In the 50 cylinder we have measurdd(X) histograms
for kgT=1.10e, 1.15%, 1.2C¢, and 1.2% for systems with
N=400, 1000, 2000, and 3000 particles, with system lengths 190 | "
betweerl ,=7.50 andl ,=56.25r. These histograms have all
the same qualities as those in the smaller cylinder. A selec-
tion of these data is shown in Fig. 11, and follows all of the
same trends as theos3histograms, even showing a small 5.0 | . ]
bulge in theP(X) data neaX=0.5 for the largest system at .
the highest temperature.

In both cylinders we have measured the equilibrium do-
main length as a function of temperature using the scheme 0.0 ‘ . ‘
described above. In each case we calcul&@eat each tem- 0.90 1.00 110 1:20 1.30
perature in all of the different pore sizes studied, in order to kT @)
determine if there were higher-order effects that our simple |G, 12. Results from histogram analysis for the equilibrium
theory was missingwhich would result inC being depen-  domain length in the @ and 5o pore systems, and from direct
dent on system sizeln all cases, for pores of length greater Monte Carlo simulation of the equilibrium domain length in the
than 1@ the values ofC showed only a weak dependence 3¢ system, over a range of temperature.

{7, ]

(]
olel
L]
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VI. EQUILIBRIUM MONTE CARLO SIMULATIONS

of the trajectories. It might be possible for a longer run in the I LI @)

30 system akgT=1.10¢ to come to thermodynamic equi- 500.0 | III I ol I I I |I|

librium, but this would probably require a trajectory of more B I -1

than 10< 10° steps, which is currently not feasible for a sys- 4000 | II I ll |I IIIIII || s ]

tem of 1C particles. I I | I I.
© 300.0 | -0
: Iﬂ ||| h

||| |“
We have already explained that equilibrium domain sizes 200.0 I
cannot be estimated directly from molecular dynamics simu-

lations because these simulations are kinetically limited and 1000 | I “l .| I IIII

cannot reach true thermodynamic equilibrium in reasonable ]I - II IIII III II
simulation times. Also, the equilibrium lengths predicted 0.0 THTH ML

from the histogram data are quite large, even for tempera- 0.0 10.0 20.0 300 00

block number (5000 MC cycles)

tures near to the critical point. By using a simulation tech-
nigue that equilibrates faster such a direct determination may
be possible, at least for some of these systems.

We have performed canonical Monte Carlo simulations in
a 3o pore system at several different temperatures in order tc
verify this. These simulations consisted of two different
kinds of moves: the usual Monte Carlo displacement moves,
and moves where two particles of different species are ex-
changed[It is simple to show that the acceptance criteria for
these exchange moves is just exfAE) as usual, provided
that both particles are chosen randorly.

Each simulation was run for 200 000 Monte Carlo cycles,
with each cycle consisting of 8000 particle-displacement
moves and 2000 particle-exchange moves. The system cor
sisted of 9258 particles 24=0.5 in a 562.5 long, 3o ra- 0.0 0.0 20.0 30.0 200
dius pore, as used in one of the quench molecular dynamic:
runs. Because the Monte Carlo method is not easily parallel-
ized these calculations were run on workstations; each took
approximately 350 hours to complete. At the end of each ~ 53000 |
simulation the data were analyzed to calculate domain
lengths in the same way thk{t) data were measured from 400.0
the quench trajectories.

We have run three different temperatures in this way. The _

L s )
lowest temperaturekgT=1.00¢, gave an equilibrium do- ~
main length estimate df, ;=840 = 150. Coarse-grained do-
main profiles from this calculation are shown in Fig.(d3
Because the domains are so large there are very few in th
system at any one time, and our average value may be a poc 1000 ¢
estimate. Furthermore, we see from the profile data that the
correlation time in this system is quite long, so that succes-
sive blocks of 5000 Monte Carlo cycles are highly corre-
lated, which also reduces the quality of this average.

ll\;ll Fltg' lC:{bI) are theﬂfo_?r_si_ggm?r?] domain prozles frlom FIG. 13. Coarse-grained domain profiles from Monte Carlo
a Monte Larlo run akg € average domain g, iations in the 3 pore system at(a) kgT=1.00, (b)

length from these data igq=420=100. This system also kgT=1.05¢, and(c) kgT=1.1Ce. The black bars are domains rich
shows considerable correlation between successive block a¥7 one component, white spaces domains rich in the other.xThe

erages, especially at earlier “times.” The last Monte Carlogyis is the simulation length; each pore “snapshot” is an average
run was done &tgT=1.10, which gave an equilibrium do-  gver 5000 Monte Carlo cycles.
main size ofl;;=380+60. Domain profile data from this
calculation are shown in Fig. 18.

These estimated values are shown alongside those calcu-
lated from histogram data in Fig. 12. The directly measuredion is that the interfaces in the system have zero width and
values appear to be less temperature dependent than the ddtanot interact. This is nearly true for very long systems at
calculated from the histograms and are systematicalljow temperatures, but as the temperature is raised the surface
slightly larger. One possible source for this discrepancy igension is lowered and the domain boundaries become much
the approximations that we have made in applying the simpléroader. The effect of this broadening is reducethe en-
thermodynamic model described above. The first approximatropy of the real system, so that the model will overestimate

300.0 ¢ i

200.0

0.0 10.0 20.0
block number (5000 MC cycles)
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this value and underestimate the average domain length. Thigidths is not difficult, except in calculating the appropriate
is a temperature dependent correction and will be more imwidths. We have tried this for a few of the systems studied
portant at higher temperatures, which may account for thend found that the effects of introducing interfaces &nd
discrepancy in the temperature dependence of the two sets 0fo- wide are relatively small, so that the predicted equilib-
data. Because we have no simple way to estimate the intefium domain lengths only change by 10% or 20%.
facial widths in the system, applying this correction in a e have also shown that directly determining the equilib-
meaningful way is difficult. , _ rium domain sizes is possible via Monte Carlo simulations,
_ The other major approximation made in applying theyt jeast in small pores relatively near to their critical points.
simple model to these systems was the assertion tha{is jikely that extremely long simulations in larger systems
P=Hpia(X2—X4). This is an arbitrary decomposition of the \yi|| pe required for accurate results. The data we have so far
histogram into interfacial and homogeneous parts and almost,ow somewhat longer domains than the thermodynamic
surelyoverestimates Psince we have not taken into account ,5gel does, which appears to be due to a systematic overes-
the width of the homogeneous phase peaks. Therefore thignation of the entropy in the thermodynamic model. The
approximationalso overestimates the entropy in the systemyonie Carlo approach to calculating domain sizes would
and underestimates the equilibrium domain size. This errogisq allow calculation of the equilibriurdomain size distri-
should be less dependent on temperature than the one ition, which is not immediately accessible from tR¢X)
scribed above. Correcting for this would be somewhat arbigai4.
trary without a detailed theory of the shape of the histo-  The main conclusion that we draw from the quench mo-

grams. lecular dynamics part of this study is that the picture of
phase-separation kinetics obtained from the single pore
model (and supported by a number of simulations of liquids
and Ising models in large poneappears to break down for
Although computer simulations of confined systems bensufficiently narrow pores. We have studied several different
efit from a relative lack of finite-size effects due to periodic pore sizes and temperatures to better characterize this behav-
boundary conditions and small system sizes, cylindrical poréor.
systems pose special problems, especially at temperaturesIn very small pores, for temperatures near enough to the
near the top of the phase envelope. With some caution, thapparent critical point there is no crossover to a slow-growth
usual concepts of phase transitions can be applied here botode. This is due to the increased mobility and width of the
these interpretations break down when the one-dimensionalomain interfaces at higher temperatures. We have only ob-
nature of the system begins to strongly influence its behavserved this directly in the smallest 3 pore studied, but
ior. Nevertheless, useful information about the thermody-expect that it would also be true in ther%ore for a quench
namics of liquid mixtures in cylindrical micropores can be temperature much closer to the pore critical point.
obtained in this way. As we make the pores bigger, the behavior at short times
In reasonably large microporémore than a few tens of approaches that of a bulk system. This is indicated by an
molecular diameters thigkmany of these problems are aca- increase in the growth exponents. In the largest pore we stud-
demic; the temperature range over which these oneied the growth exponents are far from their predicted bulk
dimensional effects are visible is extremely small and is novalues, indicating large confinement effects even én ra-
observable using present molecular simulation techniques. Idius pores.
these pores finite-size scaling theories can be applied to es- At short times there is a slow relaxation of the energy that
timate the shift in critical temperature and press[#&]. appears to be relatively independent of the pore size or tem-
These theories are very successful at describing critical poirgerature. We believe that this is due to the local relaxation of
shifts due to confinement, but are applicable only when thehe liquid structure, especially near the pore walls where the
scale of confinement is large relative to the scale of atomidiquid is highly ordered. Since all the systems we have simu-
interactions, so that the shifts are small. In the small poretated cross over to the power law growth at nearly the same
that we have studied this condition fails; the liquid is highly time, this relaxation seems to be unaffected by temperature
structured even in the center of the pore and the shifts ilor pore size. Since this relaxation stowerthan the energy
critical parameters from their bulk values are large. relaxation due to phase separation, we note that the phase
We have demonstrated that by using a very simple therseparation process apparently does not begin until the liquid
modynamic model reasonable estimates of the equilibriunis mostly relaxed at the lower temperature.
domain sizes in these systems can be obtained fPgix) Lastly, the coarse-grained domain profiles from the
data from Monte Carlo simulations. Although obtaining thequench studies suggest that the principal domain growth
P(X) data requires long simulations in fairly large systems,mechanism at all but the earliest times is the condensation of
the analysis of these data is simple and gives good resultaeighboring domains. This process is not very visible in the
We have shown that this model is consistent over a range afmallest pore, which is the only pore for which the kinetic
pore sizes, lengths, and temperatures, in that the predicteiowing at late times isiot observed, which suggests that in
equilibrium domain lengths are not systematically dependernthe smaller poregor pores close to their critical tempera-
on the pore lengths used in the simulati@xcept in the ture9 there is a second growth mechanism.
shortest pores usg@nd that the histograms we have mea- In summary, we have studied a binary fluid mixture ad-
sured have the expected shapes for all systems except largerbed in simple cylindrical pores by quench molecular dy-
ones close to the critical temperature. Introducing greatenamics, histogram-biased semigrand Monte Carlo, and ca-
realism into the model by including nonzero interfacial nonical Monte Carlo simulations. We have characterized the

VII. DISCUSSION



3196 LEV. D. GELB AND K. E. GUBBINS 56
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